Flexor Hallucis Longus (FHL):

Origin: Posterior surface of the distal 2/3rds of the fibula, interosseous membrane, and adjacent intermuscular septa and fascia.

Insertion: Base of the distal phalanx of the great toe, plantar surface .

Nerve: Tibial nerve arising from the sciatic nerve via the sacral plexus, originating from nerve roots L5, S1, and S2.

Action:

Phalanges: flexion of the interphalangeal joint of the great toe and assists in flexion of the metatarsophalangeal joint

Ankle: Plantar flexion of the foot, as well as, aaccesory  invertor of the foot and ankle.

Relative Location:

The flexor hallucis longus (FHL) is located lateral to the tibialis posterior. The anterolateral border combined with the periosteum of the fibula and posterior intermuscular septum.

Integrated Function:

Stabilization:

Stabilizes the tibiotalor & subtalor joints,transverse tarsal, tarsometatasal, metatarsophalangeal, interphalengeal joints.

Eccentric action :

The FHL eccentrically decelerate extension of the metatarsophalangeal and interphalangeal joints, as well as dorsiflexion and eversion of the ankle.

Synergists:

The FHL work synergistically with the tibialis posterior to eccentrically decelerate eversion during the mid-stance of gait cycle. In addition, it also helps medial gastronemus and plantaris . It also assist in push off and landing mechanics during gait cycle.

A functional relationship may exist between the FHL, the tibialis posterior and tibialis anterior in control of the talus. Some evidence state that the FHL may control talar inversion via the groove in the talus and the sustentaculum tali of the calcaneus.

Arthrokinematics:

The FHL cross several joints, but likely have their largest impact on the interphalangeal joints – capable of producing plantar glide. In claw toe deformity the extensor hallucis longus and extensor digitorum longus may also contribute to dysfunction by producing excessive dorsal glide of the metatarsophalangeal joints.

Course of FHL:

The FHL has an interesting course, running through a groove on the posterior medial talus and continuing through a groove inferior to the sustentaculum tali.

During contraction of the FHL this creates an anterior and superior force on the medial side of the talus. This may have functional implications on talar and calcaneal mechanics, specifically an ability to contribute to inversion and a varus tilt of the talus and calcaneus . It potentially anterior glide of the talus on the tibia.

Fascial Integration of the FHL

The most obvious relationship exists between the posterior tibial fascia and the combined FHL and FDL. Which links the deep posterior compartment muscles by function and fascia.

Additionally, the  tendinous slips of the FHL may distribute the load in the forefoot, especially during toe-off phase of gait cycle. This increases the weight-bearing on the forefoot and eventually helps the FHL support the medial longitudinal arch of the foot .

Lower Leg Dysfunction (LLD):

These muscles are long due to excessive eversion at the subtalar joint and tilt of the talus, but rather than resulting in a decrease in tone, the inhibition of prime movers results in over-use and hyper-facilitation of these synergistic muscles.

When tibialis posterior is inhibited , the FHL become synergistically dominant. That is to state that the overactive fibularis muscles result in altered reciprocal inhibition of the tibialis posterior and a relative increase in FHL activity to compensate for a lack of force production in inversion. Furthermore , there is evidence suggest that the FHL and FDL may play a similar role at the metatarsalphalangeal joints, compensating for inhibited short toe flexors.

Excessive pronation:

The change in arthrokinematics and activity may limit extension of the toes  a compensation pattern that generally leads to excessive pronation (eversion) from heel-off to toe-off during the stance phase of gait cycle.

To sum up, the FHL is long and over-active, acting as overactive synergists. This clearly indicate that this muscles should be released, but do not stretched or activated. This trigger points in these muscles are often mistaken for gastrocnemius and soleus trigger points during self-administered release technique.

Anantomy

image coutsey : wikipedia.com

FHL Trigger Points :

Palpation results in tenderness (trigger points or tender points) and may result in radiating symptoms along the muscle and its tendons. Based on the theoretical model of trigger point development it would seem likely that “trigger points” are dysfunction at the “motor point” of a muscle, and release will decrease tonicity via reflexive inhibition or ischemic pressure .

 

Referances:

  1. Carolyn Richardson, Paul Hodges, Julie Hides. Therapeutic Exercise for Lumbo Pelvic Stabilization – A Motor Control Approach for the Treatment and Prevention of Low Back Pain: 2nd Edition (c) Elsevier Limited, 2004
  2. Phillip Page, Clare Frank, Robert Lardner, Assessment and Treatment of Muscle Imbalance: The Janda Approach © 2010 Benchmark Physical Therapy, Inc., Clare C. Frank, and Robert Lardner
  3. Donald A. Neumann, “Kinesiology of the Musculoskeletal System: Foundations of Rehabilitation – 2nd Edition” © 2012 Mosby, Inc.
  4. Tom Myers, Anatomy Trains: Second Edition. © Elsevier Limited 2009
  5. David G. Simons, Janet Travell, Lois S. Simons, Travell & Simmons’
  6. Myofascial Pain and Dysfunction, The Trigger Point Manual, Volume 1. Upper Half of Body: Second Edition,© 1999 Williams and Wilkens
  7. Cynthia C. Norkin, D. Joyce White, Measurement of Joint Motion: A Guide to Goniometry – Third Edition. © 2003 by F.A. Davis Company
  8. Leon Chaitow, Muscle Energy Techniques: Third Edition, © Elsevier 2007
  9. Cynthia C. Norkin, Pamela K. Levangie, Joint Structure and Function: A Comprehensive Analysis: Fifth Edition © 2011 F.A. Davis Company
  10. Florence Peterson Kendall, Elizabeth Kendall McCreary, Patricia Geise Provance, Mary McIntyre Rodgers, William Anthony Romani, Muscles: Testing and Function with Posture and Pain: Fifth Edition © 2005 Lippincott Williams & Wilkins
  11. Shirley A Sahrmann, Diagnoses and Treatment of Movement Impairment Syndromes, © 2002 Mosby Inc.
  12. Andrew Biel, Trail Guide to the Human Body: 4th Edition, © 2010
Proactivephysiotherapy, hamstring, assesment, lower limb

Hamstring muscles strain : Assessment & Risk factors

Hamstring muscle strain injuries  are common in sports  which required acceleration, deceleration, rapid change in direction.

According to Schache et al 2009 & Heiderscheit et al 2005 Hamstring injuries are proposed to occur during the terminal swing phase of running as a consequence of an eccentric contraction. Sometimes hamstring late firing also contribute to strain.

There are two mechanisms of hamstring injuries. .

  1. Type 1: high intensity running with the injury occurring during late swing phase involving the proximal musculotendinous junction of the long head of biceps femoris.
  2. Type 2: stretching of the hamstring complex due to an extreme joint position involving mostly semimembranosus and the proximal tendon.

The majority of hamstring injuries occur at the biceps femoris (BF) long head.

What are the RISK FACTORS?

Many research papers have considered a potential risk factor for hamstring muscles strain injury however other authors inconsistently identified as contributing to the injury.

In addition to that, A systematic review and meta-analysis research said   risk factors for hamstring injury

  • Older age
  • Increase quadriceps peak torque
  • Past history of hamstring injury

There are Other strength measures such as hamstring: quadriceps ratio, which is the best commonly perceived to be predictive of injury, were not associated with a hamstring injury (Freckleton & Pizzari, 2013).

 

CLINICAL ASSESSMENT AND DIFFERENTIAL DIAGNOSIS

Here you can predict the differential diagnosis for hamstring strain injury

  1. lumbar spine (disc/ facet joint),
  2. SIJ dysfunction, gluteal/piriformis/Gemelli trigger points,
  3. Hamstring tendinopathy, avulsion injuries,
  4. vascular claudication and compartment syndrome (Brukner & Khan, 2006).

The subjective assessment is a key point to correctly diagnose an injury. Players with a hamstring injury will report sudden onset of pain localized to the hamstring region with a clear mechanism or incident.  (Pizzari, et al., 2010).  A particularly previous hamstring injury is also important of the major risk factors for future hamstring injuries (Freckleton, et al., 2012).

There are some  positive clinical signs, and symptoms for hamstring injury (Bennell, et al., 1999):

  • Immediate onset of posterior thigh pain,
  • Tenderness on palpation,
  • Reproduction of pain on a stretch of hamstring,
  • Reduced straight leg raise ROM,
  • Reduced strength on a resisted active contraction of hamstrings

 

What should you include in your  physical examination ?

  1.  lumbar spine AROM,
  2. Slump test
  3. SLR, active knee extension test (AKE),
  4. passive hamstring muscle stretch and palpation of pelvic musculature for trigger points and reproduction of posterior thigh pain.
  5. Resisted contraction of the hamstrings should be tested in multiple positions of knee flexion (Brukner & Khan, 2006).

Palpation is the most important aspect of the physical examination to help identify location and severity of the injury (Pizzari, et al., 2010).

 

A  study investigated the use of the single leg hamstring bridge(SLHB) as a clinical test in predicting hamstring injuries in football players. The hamstring muscles in a functional position similar to terminal swing and assesses endurance parameters rather than peak torque.

SLHB test could be used to screen and identify athletes who are potentially at risk of sustaining a hamstring injury. It may be used to evaluate an athlete to return to sport.

 

REFERENCES :

 

  1. Bennell K, Tully E, Harvey N. Does the toe-touch test predict hamstring injury in Australian Rules footballers? Aust J Physiother 1999;45:103–9.
  2. Brukner, P., & Khan, K. (2006). Clinical sports medicine. McGraw Hill.
  3. Askling, C., Saartok, T., & Thorstensson, A. (2006). Type of acute hamstring strain affects flexibility, strength, and time to return to pre-injury level. British Journal of Sports Medicine40(1), 40-44.
  4. Croisier, J. L. (2004). Factors associated with recurrent hamstring injuries. Sports Medicine34(10), 681-695.
  5. Freckleton G, Pizzari T. Risk factors for hamstring muscle strain injury in sport: a systematic review and meta-analysis. Br J Sports Med 2013;47:351–8.
  6. Freckleton, G., Cook, J., & Pizzari, T. (2013). The predictive validity of a single leg bridge test for hamstring injuries in Australian Rules Football Players. British journal of sports medicine.
  7. De Smet, A. A., & Best, T. M. (2000). MR imaging of the distribution and location of acute hamstring injuries in athletes. American Journal of Roentgenology174(2), 393-399.
  8. Devlin L. Recurrent posterior thigh symptoms detrimental to performance in rugby union: predisposing factors. Sports Med 2000;29:273–87.
  9. Drezner JA. Practical management: hamstring muscle injuries. Clin J Sport Med 2003;13:48–52.
  10. Heiderscheit BC, Hoerth DM, Chumanov ES, et al. Identifying the time of occurrence of a hamstring strain injury during treadmill running: a case study. Clin Biomech 2005;20:1072–8.
  11. Koulouris, G., & Connell, D. (2005). Hamstring Muscle Complex: An Imaging Review1. Radiographics25(3), 571-586.
  12. Orchard J, Marsden J, Lord S, et al. Preseason hamstring muscle weakness associated with hamstring muscle injury in Australian footballers. Am J Sports Med 1997;25:81–5
  13. Pizzari, T., Taylor, R., &amp; Coburn, P. (2012). The who, where and how.. Understanding hamstring injuries in the AFL. <em>Journal of Science and Medicine in Sport, S143.
  14. Schache AG, Wrigley TV, Baker R, et al. Biomechanical response to hamstring muscle strain injury. Gait Posture 2009;29:332–8.12
  15. Schneider-Kolsky M, Hoving J, Warren P, et al. A comparison between clinical assessment and magnetic resonance imaging of acute hamstring injuries. Am J Sports Med 2006;34:1008
  16. The predictive validity of a single leg bridge test for hamstring injuries in Australian Rules Football Players   2014 Apr;48(8):713-7. doi: 10.1136/bjsports-2013-092356. Epub 2013 Aug 5.